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LETTER TO THE EDITOR

On universality of the smoothed eigenvalue density of large
random matrices

A Boutet de Monvel and A Khorunzhy
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and
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Abstract. We describe the resolvent approach for the rigorous study of the mesoscopic regime
of Hermitian matrix spectra. We present results reflecting universal behaviour of the smoothed
density of the eigenvalue distribution of large random matrices.

Random matrices of large dimensions introduced and studied by Wigner [1] have applications
in various fields of theoretical physics (see e.g. monographs and reviews [2–4] and references
therein). In these studies, the spectral properties of random matrix ensembles play an important
role.

Here the universality conjecture for large random matrices, formulated by Dyson [2,5], is
known as the most interesting and challenging problem. It concerns the asymptotically local
spectral statistics, i.e. the functions that depend on a certain number,q, of eigenvalues of the
randomN ×N matrixAN , whereq remains fixed whenN →∞.

Loosely speaking, the universality conjecture states that the local statistics regarded in
the limit N → ∞, do not depend on the details of the probability distributionP(AN) of the
ensemble but are determined by the symmetries of the ensemble. For example, the expressions
derived for local statistics of Hermitian ensembles are different from those of real symmetric
matrices.

Given a Hermitian (or real symmetric) matrixAN , the distribution of its eigenvalues
λ
(N)
1 6 · · · 6 λ(N)N is determined by the normalized eigenvalue counting function

σN(λ) ≡ σ(λ;AN) := #{λ(N)j 6 λ}N−1

or, equivalently, by the associated measure

σN(1) ≡
∫ b

a

ρN(λ) dλ 1 = (a, b) ⊂ R
with the formal density

%N(λ) = 1

N

N∑
j=1

δ(λ− λ(N)j ). (1)

The functionσN(λ) is called the empirical eigenvalue distribution function. Regarding
σN(1N), it turns out to be the local spectral statistics when considered with the intervals
of the length|1N | = O(1/N) asN →∞.
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In general, the local spectral regime is rather hard to rigorously analyse. The universality
conjecture is supported mainly for those ensembles of random matrices that have the explicit
form of the joint probability distributionπN(λ1, . . . , λN) of eigenvalues. Starting fromπN ,
the same expression for anm-point correlation function is derived by Dyson for the circular
ensemble of unitary random matrices (CUE) [2], by Mehta for GUE [6], and by Pastur and
Shcherbina for the matrix models ensemble [7]. This expression is given by the determinant
of anm × m matrix with the entries{sinπ(ti − tj )/π(ti − tj )}, i, j = 1, . . . , m. The same
expression is derived in [8] for a random matrix ensemble with the entries that are independent
random variables, whose probability distribution is a convolution of the Gaussian distribution
and the arbitrary one.

Our principal goal is to examine the presence of universality of the spectral characteristics
for those ensembles of random matrices, for which the explicit form of the joint eigenvalue
distributionπN is unknown. For example, the random matrix with independent±1 entries
falls into this class. Our claim is that the eigenvalue density (1) smoothed over the intervals
1N ⊂ R possesses the universal properties asN → ∞ provided the lengthlN = |1N |
satisfies the conditions 1� lN � N .

We determine the smoothing (or regularization) of (1) by the formula

R
(α)
N (λ) :=

∫ ∞
−∞

Nα

1 +N2α(λ− λ′)2%N(λ
′) dλ′ (2)

and note that in this case

R
(α)
N (λ) = Im TrGN(λ + iN−α)N−1

whereGN(z) = (AN − z)−1.
According to the above definition,ξ (α)N (λ) with α = 1 represents the asymptotically local

spectral statistics. The opposite asymptotic regime whenα = 0 is known as the global one.
In this case the limit

g(z) = lim
N→∞

TrGN(z)N
−1 |Im z| > 0

if it exists, determines the limiting eigenvalue distributionσ(λ) of the ensemble{AN }; that is

σ(λ) = lim
N→∞

σN(λ) g(z) =
∫ ∞
−∞
(λ− z)−1 dσ(λ).

Regarding the global regime, the resolvent approach developed in [9, 10] is proved to
be rather effective in studies of the eigenvalue distribution of large random matrices (see,
for example [11–13]). In this regime the limit ofgN(z) = TrGN(z)N

−1 depends on the
probability distribution of the ensemble, i.e. is non-universal, as well as the fluctuations of
gN(z) [11,12].

We are interested in the behaviour of (2) in the case of 0< α < 1. This regime is
intermediate between the local and the global ones. It can be called the mesoscopic regime in
random matrix spectra. For this regime, the modified version of the resolvent approach was
proposed in [14] to study spectral properties of random matrices with independent arbitrary
distributed entries (see also [15,16]).

As a further development of the resolvent approach of [14], we present the results
concerning random matrices with statistically dependent entries. We consider the ensemble
of random matrices

Hm,N(x, y) = 1

N

m∑
µ=1

ξµ(x)ξµ(y) x, y = 1, . . . , N (3)
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where the random variables{ξµ(x)}, x, µ ∈ N have joint Gaussian distribution with zero
mathematical expectation and covariance

E{ξµ(x)ξν(y)} = u2δxyδµν.

Hereδxy denotes the Kronecker delta-symbol. This ensemble, first considered in [17], is now
of extensive use in the statistical mechanics of disordered spin systems [4] and in the modelling
of memory in the theory of neural networks [18].

Theorem 1. LetGm,N(z) = (Hm,N − z)−1. Then, forN,m → ∞, m/N → c > 0, the
random variable

R
(α)
m,N(λ) := Im TrGm,N(λ + iN−α)N−1

converges with probability 1 to the nonrandom limit

π%c(λ) = 1

2λu2

(
4cu4 − [λ− (1 + cu2)]2

)1/2
(4)

provided0< α < 1 andλ ∈ 3c,u = (u2(1−√c)2, u2(1 +
√
c)2).

Theorem 2. Considerk random variables

γ
(α)
m,N(i) := N1−α[R(α)m,N(λi)−ER(α)m,N(λi)] i = 1, . . . , k

where λi = λ + τiN
−α with given τi . Then, under the conditions of theorem 1 the

joint distribution of the vector(γN(1), . . . , γN(k)) converges to the Gaussiank-dimensional
distribution with zero average and covariance

C(τi, τj ) = 4− (τi − τj )2
[4 + (τi − τj )2]2

. (5)

Remark. It is easy to see that if|τ1− τ2| → ∞, then

C(τ1, τ2) = −(τ1− τ2)
−2(1 + o(1)). (6)

This coincides with the average value of Dyson’s 2-point correlation function for real symmetric
matrices considered at large distances|t1− t2| � 1 [2].

To discuss these results, let us first note that theorem 1 proves the existence of the
smoothed density of eigenvalues that coincides with that derived in [17] in the global regime;
%c(λ) = σ ′c(λ), λ > 0, where

σc(λ) = lim
N→∞

σ(λ;Hm,N).
This density obviously differs from the semicircle (or Wigner) distributionσw(λ)

σw(λ) = lim
N→∞

σ(λ;WN)

whereWN(x, y) = w(x, y)/
√
N are random symmetric matrices with independent identically

distributed entries with zero mathematical expectation and variancev2. This ensemble is known
as the Wigner ensemble of random matrices. It has been known since the pioneering work of
Wigner [1] that

%w(λ) = σ ′w(λ) =
1

2πv2

{
(4v2 − λ2)1/2 if |λ| 6 2v

0 if |λ| > 2v.

It should be noted that in [14,16] we proved analogues of theorems 1 and 2 for the Wigner
ensemble of random matrices. We have shown that theorem 2 is true providedEw(x, y)8 is
bounded andα ∈ (0, 1

8). The correlation functionC(τi, τj ) is given again by (5). Comparing
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these results, we conclude the fluctuations of the smoothed eigenvalue density do not feel the
dependence between matrix elements.

Thus, our results can be regarded as statements corroborating the universality conjecture
for the mesoscopic regime. Namely, they show that in the mesoscopic regime the smoothed
density of eigenvaluesR(α)N is the self-averaging variable. It converges, asN → ∞, to the
eigenvalue distribution of the ensemble and depends on the probability distribution of the
random matrix ensemble. At the same time the fluctuations ofR

(α)
N in the limit N → ∞

coincide for two such different classes of random matrices as (3) and the Wigner one.
This dual-type behaviour of the eigenvalue density of random matrices in the mesoscopic

regime is well known in theoretical physics (see, for example, the review [3], ch 8). For
example, the universal properties of the mesoscopic eigenvalue density were studied in [19,20]
for the matrix models ensemble. It was shown that the correlation function of the eigenvalue
density (in theoretical physics terms, the ‘wide’ correlator) depends on the edges of the
spectrum. For the case of the symmetric support of the limiting eigenvalue distribution, the
expression for the ‘wide’ correlator coincides with the asymptotic expression (6). It should be
noted that our result (6) does not depend on the support of%c(λ).

Let us describe the method developed for the proof of theorems 1 and 2 (the full version
will be published elsewhere). It represents a modification of the resolvent approach proposed
in [9,10]. This approach was developed to study the eigenvalue distribution of random matrices
and random operators in the global regime|Im z| > 0 asN →∞. It is based on the derivation
and asymptotic analysis of the system of relations for the momentsL

(N)
k = E[gN(z)]k, k > 1.

These relations are of the following form:

Lk = aLk−1 + bLk+1 +8(N)
k (7)

where the terms8(N)
k can be estimated byN−1|Im z|−k. Thisa priori estimate implies that in

the study of the asymptotic behaviour ofgN(z), one can restrict oneself to only the first two
relations. Namely, all information about the limiting behaviour ofL

(N)
k , k > 1 can be derived

from relations forL(N)1 andL(N)2 .
To considergN(z) in the mesoscopic regime, we start with the same system of relations

for L(N)k . The main observation made in [14] is that in this case we need all the infinite system
of relations. More precisely, the closerα is to 1, the greater numberK(α) becomes, such that
we need to consider relations forL(N)k , k > K(α).

The matter is that the terms8(N)
k can be estimated in terms ofL(N)k multiplied byN−β ,

whereβ = min{α, 1− α}. The structure of relation (7) is such thatL(N)j , j < k enter into the

relation forL(N)k with the factorNβ(k−j). Therefore, admittinga priori estimate|L(N)1 | 6 Nα,
we deduce that it enters into relation (7) with the factorN−kβ . Regarding,k > K(α), one
obtains the relations with the terms that converge to finite limits asN →∞.

The authors are grateful to A Its, P Bleher, and H Widom and other organizers of the semester
‘Random Matrix Models and Their Applications’ at MSRI (Berkeley) for the their kind
invitations to participate in the workshops and for financial support. AK is grateful to the
MAE (France) for financial support.
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